平抛运动知识点总结 平抛运动知识点总结手写

瑞恒号 2025-04-21 10:17 1

求一篇高一物理平抛运动的物理详案(要求详细、正常讲课一节课时的内容)

、重点、难点分析 1.重点是平抛运动的规律:物体(质点)的位置、速度如何随时间变化,轨迹是如何形成的; 2.平抛运动是怎样分解为水平方向的匀速直线运动和竖直方向的自由落体运动的?这是难点,也是教学的重点。 三、主要教学过程 (一)引入新课 复习:什么是曲线运动?曲线运动的特点有哪些?物体做曲线运动的条件是什么? 过渡:通过生活中常见的抛体运动引出平抛运动。 入题:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动叫做平抛运动。 (二)教学过程设计 1.平抛运动的形成 物体的初速度和受力情况决定了物体的运动形式。 演示:网球运动员举拍沿水平方向用力击球,球的运动可近似看作平抛运动 概括出形成平抛运动的条件: (1)物体具有水平方向的初速度;(2)运动过程中物体只受重力。 2.平抛运动的分解 (1)平抛运动的竖直分运动是自由落体运动 演示:平抛的小球与自由下落的小球同时落地。 (2)平抛运动的水平分运动是匀速直线运动。 3.平抛运动的规律 (1)平抛运动的位移公式 明确:以抛出点为坐标原点,沿初速度方向为x轴正方向,竖直向下为y轴正方向。 从抛出时开始计时,t时刻质点的位置为P(x,y),如图1所示。 x=v0t (1) 由于从抛出点开始计时,所以t时刻质点的坐标恰好等于时间t内质点的水平位移和竖直位移,因此(1)(2)两式是平抛运动的4.高二年级上册物理知识点归纳位移公式。 ①由(1)(2)两式可在xOy平面内描出任一时刻质点的位置,从而得到质点做平抛运动的轨迹。 ②求时间t内质点的位移——t时刻质点相对于抛出点的位移的大小 位移的方向可用s与x轴正方向的夹角α表示,α满足下述关系 ③由(1)(2)两式消去t,可得轨迹方程 即,平抛运动的轨迹为抛物线。 (2)平抛运动的速度公式 t时刻质点的速度vt是由水平速度vx和竖直速度vy合成的。如图2所示。 vx=v0 (3) vy=gt (4) vt的方向可用vt与x轴正方向的夹角β来表示,β满足下述关系。

平抛运动知识点总结 平抛运动知识点总结手写平抛运动知识点总结 平抛运动知识点总结手写


平抛运动知识点总结 平抛运动知识点总结手写


小结:一.平抛运动 定义:将物体以一定的初速度沿水平方向抛出,物体只在重力 作用下所做的运动。 条件:有一定的水平初速度;忽略(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;空气阻力;只受重力的作用。 二、竖直方向的运动规律 受力情况:只受重力作用 初速度情况:无 结论:平抛运动在竖直方向上的分运动是自由落体运动. 三、水平方向的运动规律 受力情况:不受力 初速度情况:有 结论:平抛运动在水平方向的分运动为匀速直线运动.

高中物理必修二知识点汇总

3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。那么接下来给大家分享一些关于高中物理必修二知识点,希望对大家有所帮助。

高中物理必修二知识1

一、知识点

(一)能、势能、动能的概念

(二)功

1功的定义、定义式及其计算

2正功和负功的判断:力与位移夹角角度、动力学角度

(三)功率

1功率的定义、定义式

2额定功率、实际功率的概念

3功率与速度的关系式:瞬时功率、平均功率

4功率的计算:力与速度角度、功与时间角度

(四)重力势能

1重力做功与路径无关

2重力势能的表达式

3重力做功与重力势能的关系式

4重力势能的相对性:零势能参考平面

5重力势能系统共有

(五)动能和动能定理

1动能的表达式

2动能定理的内容、表达式

(六)机械能守恒定律:内容、表达式

二、重点考察内容、要求及方式

1正负功的判断:夹角角度、动力学角度:力对物体产生的加速度与物体运动方向一致或相反,导致物体加速或减速,动能增大或减小(选择、判断)

2功的计算:重力做功、合外力做功(动能定理或功的定义角度)(填空、计算)

3功率的计算:力与速度角度、功与时间角度(填空、计算)

4机车启动模型:功率与速度、力的关系式;运动学规律(填空、计算)

5动能定理与受力分析:求牵引力、阻力;要求正确受力分析、运动学规律(计算)

6机械能守恒定律应用:机械能守恒定律表达式、设定零势能参考平面;求解动能、高度等

高中物理必修二知识2

一、知识点

(一)曲线运动的条件:合外力与运动方向不在一条直线上

(二)曲线运动的研究 方法 :运动的合成与分解(平行四边形定则、三角形法则)

(三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动)

(四)匀速圆周运动

1受力分析,所受合力的特点:向心力大小、方向

2向心加速度、线速度、角速度的定义(文字、定义式)

3向心力的公式(多角度的:线速度、角速度、周期、频率、转)

(五)平抛运动

1受力分析,只受重力

2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式

3速度与水平方向的夹角、位移与水平方向的夹角

(五)离心运动的定义、条件

二、考察内容、要求及方式

1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)

2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空)

3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表示方式、合力提供向心力(计算题)

3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空)

4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算)

5离心运动:临界条件、静摩擦力、匀速圆周运动相关计算(选择、计算)

高中物理必修二知识3

节认识静电

一、静电现象

1、了解常见的静电现象。

2(1) 力是矢量,其合成与分解都遵循平行四边形定则。、静电的产生

(1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。

(2)接触起电:(3)感应起电:

3、同种电荷相斥,异种电荷相吸。

二、物质的电性及电荷守恒定律

1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。

2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。

3、用物质的原子结构和电荷守恒定律分析静电现象

(1)分析摩擦起电(2)分析接触起电(3)分析感应起电

4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。

第二节电荷间的相互作用

一、电荷量和点电荷

1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。单位为库仑,简称库,用符号C表示。

2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。

二、电荷量的检验

1、检测仪器:验电器

2、了解验电器的工作原理

三、库仑定律

1、内容:在真空中两个静止的点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。

2、大小:

方向:在两个电电荷的连线上,同性相斥,异性相吸。

3、公式中k为静电力常量,

4、成立条件

第三节电场及其描述

一、电场

1、电场:电荷的周围存在着电场,带电体间的相互作用是通过周围的电场发生的。

2、电场基本性质:对放入其中的电荷有力的作用。

3、电场力:电场对放入其中的电荷有作用力,这种力叫电场力

电荷间的静电力就是一个电荷受到另一个电荷激发电场的作用力。

高中物理必修二知识4

一、固体

1、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异

2、非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性

①判断物质是晶体还是非晶体的主要依据是有无固定的熔点

②晶体与非晶体并不是的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)

3、单晶体多晶体

如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)

如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。

二、液体

1、表面张力:当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。如露珠

2、液晶

分子排列有序,各向异性,可自由移动,位置无序,具有流动性

各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的

三:饱和汽与饱和汽压

①汽化

汽化:物质由液态变成气态的过程叫汽化。

1、汽化有两种方式:蒸发和沸腾。

2、液体在沸腾过程中要不断吸热,但温度保持不变,这一温度叫沸点。不同物质的沸点是不同的。而且沸点与大气压有关,大气压越大,沸点也就越高。

②饱和汽与饱和汽压

饱和汽:与液体处于动态平衡的蒸汽叫做饱和汽。没有达到饱和状态的蒸汽叫做未饱和汽。

饱和汽压:在一定温度下,饱和汽的压强是一定的,叫做饱和汽压。未饱和汽的压强小于饱和汽压。

1、饱和汽压只是指空气中这种液体蒸汽的分气压,与 其它 气体的压强无关。

2、饱和汽压与温度和物质种类有关。

四:物态变化中的能量交换

①熔化热

1、熔化:物质从固态变成液态的过程叫熔化(而从液态变成固态的过程叫凝固)。

注意:晶体在熔化和凝固的过程中温度不变,同一种晶体的熔点和凝固点相同;而非晶体在熔化过程中温度不断升高,凝固的过程中温度不断降低。

2、熔化热:某种晶体熔化过程中所需的能量(Q)与其质量(m)之比叫做这种晶体的熔化热。

I、用λ表示晶体的熔化热,则λ=Q/m,在单位中熔化热的单位是焦尔/千克(J/Kg)。

II、晶体在熔化过程中吸收热量增大分子势能,破坏晶体结构,变为液态。所以熔化热与晶体的质量无关,只取决于晶体的种类。

III、一定质量的晶体,熔化时吸收的热量与凝固时放出的热量相等。

注意:非晶体在熔化的过程中温度会不断变化,而不同温度下非晶体由固态变为液态时吸收的热量是不同的,所以非晶体没有确定的熔化热。

②汽化热

1、汽化:物质从液态变成气态的过程叫汽化(而从气态变成液态的过程叫液化)。

2、汽化热:某种液体汽化成同温度的气体时所需要的能量(Q)与其质量(m)之比叫这种物质在这一温度下的汽化热。用L表示汽化热,则L=Q/m,在单位制中汽化热的单位是焦尔/千克(J/Kg)。

I、液体汽化时,液体分子离开液体表面成为气体分子,要克服其它分子的吸引而做功,因此要吸收能量。

II、一定质量的物质,在一定的温度和压强下,汽化时吸收的热量与液化时放出的热量相等。

III、液体的汽化热与液体的物质种类、液体的温度、外界压强均有关。

高中物理必修二知识5

一、运动的描述

1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等aT平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

二、力

1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力,平行无力要切记。

3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最小间,多力合力合另边。

多力问题状态揭,正交分解来解决,三角函数能化解。

4.力学问题方法多,整体隔离和设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

三、牛顿运动定律

1.F等ma,牛顿二定律,产生加速度,原因就是力。

合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。

2.N、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零

四、曲线运动、万有引力

1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

五、机械能与能量

1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。

2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

六、热力学定律

1.定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。

2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。

高中物理必修二知识6

1、α粒子散射试验结果大多数的α粒子不发生偏转;少数α粒子发生了较大角度的偏转;极少数α粒子出现大角度的偏转(甚至反弹回来)

2、原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)

3、光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}

4、原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数

5、天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的

6、爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}

7、核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}

高中物理必修二知识点相关 文章 :

★ 高中物理必修二知识点总结(公式篇)

★ 高中物理必修二知识点总结

★ 高中物理必修二公式大全

★ 高中物理必修二知识点总结(万有引力)

★ 高中物理必修二知识点总结(期末必备)

★ 高中物理必修二知识点总结(曲线运动)

★ 高一物理必修二知识点整理

★ 高一物理必修二知识点人教版

★ 高一物理必修二知识点总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高一物理知识点总结

自由落体运动

物理(必修一)——知识考点归纳

章.运动的描述

考点一:时刻与时间间隔的关系

时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如:

第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。

区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。

考点二:路程与位移的关系

位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。

考点三:速度与速率的关系

速度 速率

物理意义 描述物体运动快慢和方向的物理量,是矢

量 描述物体运动快慢的物理量,是

标量

分类 平均速度、瞬时速度 速率、平均速率(=路程/时间)

决定因素 平均速度由位移和时间决定 由瞬时速度的大小决定

方向 平均速度方向与位移方向相同;瞬时速度

方向为该质点的运动方向 无方向

联系 它们的单位相同(m/s),瞬时速度的大小等于速率

考点四:速度、加速度与速度变化量的关系

速度 加速度 速度变化量

意义 描述物体运动快慢和方向的物理量 描述物体速度变化快

慢和方向的物理量 描述物体速度变化大

小程度的物理量,是

一过程量

定义式

单位 m/s m/s2 m/s

决定因素 v的大小由v0、a、t

决定 a不是由v、△v、△t

决定的,而是由F和

m决定。 由v与v0决定,

而且 ,也

由a与△t决定

方向 与位移x或△x同向,

即物体运动的方向 与△v方向一致 由 或

决定方向

大小 ① 位移与时间的比值

② 位移对时间的变化

率③ x-t图象中图线

上点的切线斜率的大

小值 ① 速度对时间的变

化率

② 速度改变量与所

用时间的比值

③ v—t图象中图线

上点的切线斜率的大

小值

考点五:运动图象的理解及应用

由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。

1. 理解图象的含义

(1) x-t图象是描述位移随时间的变化规律

(2) v—t图象是描述速度随时间的变化规律

2. 明确图象斜率的含义

(1) x-t图象中,图线的斜率表示速度

(2) v—t图象中,图线的斜率表示加速度

第二章.匀变速直线运动的研究

考点一:匀变速直线运动的基本公式和推理

1. 基本公式

(1) 速度—时间关系式:

(2) 位移—时间关系式:

(3) 位移—速度关系式:

三个公式中的物理量只要知道任意三个,就可求出其余两个。

利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同,

解题时要有正方向的规定。

2. 常用推论

(1) 平均速度公式:

(2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:

(3) 一段位移的中间位置的瞬时速度:

(4) 任意两个连续相等的时间间隔(T)内位移之为常数(逐相等):

考点二:对运动图象的理解及应用

1. 研究运动图象

(1) 从图象识别物体的运动性质

(2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义

(3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义

(4) 能认识图象与坐标轴所围面积的物理意义

(5) 能说明图象上任一点的物理意义

2. x-t图象和v—t图象的比较

如图所示是形状一样的图线在x-t图象和v—t图象中,

x-t图象 v—t图象

①表示物体做匀速直线运动(斜率表示速度) ①表示物体做匀加速直线运动(斜率表示加速度)

②表示物体静止 ②表示物体做匀速直线运动

③表示物体静止 ③表示物体静止

④ 表示物体向反方向做匀速直线运动;初

位移为x0 ④ 表示物体做匀减速直线运动;初速度为

v0

⑤ 交点的纵坐标表示三个运动的支点相遇时

的位移 ⑤ 交点的纵坐标表示三个运动质点的共同速度

⑥t1时间内物移为x1 ⑥ t1时刻物体速度为v1(图中阴影部分面积表

示质点在0~t1时间内的位移)

考点三:追及和相遇问题

1.“追及”、“相遇”的特征

“追及”的主要条件是:两个物体在追赶过程中处在同一位置。

两物体恰能“相遇”的临界条件是两物体处在同一位置时,两物体的速度恰好相同。

2.解“追及”、“相遇”问题的思路

(1)根据对两物体的运动过程分析,画出物体运动示意图

(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中

(3)由运动示意图找出两物移间的关联方程

(4)联立方程求解

3. 分析“追及”、“相遇”问题时应注意的问题

(1) 抓住一个条件:是两物体的速度满足的临界条件。如两物体距离、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。

(2) 若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动

4. 解决“追及”、“相遇”问题的方法

(1) 数学方法:列出方程,利用二次函数求极值的方法求解

(2) 物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解

1. 判断物体的运动性质

(1) 根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。

(2) 由匀变速直线运动的推论 ,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之相等,则说明物体做匀变速直线运动。

2. 求加速度

(1) 逐法

(2)v—t图象法

利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a.

第三章 相互作用

考点一:关于弹力的问题

1. 弹力的产出

条件:(1)物体间是否直接接触

(2) 接触处是否有相互挤压或拉伸

2.弹力方向的判断

弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

(1) 压力的方向总是垂直于支持面指向被压的物体(受力物体)。

(2) 支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。

(3) 绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。

补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。

3. 弹力的大小

(1) 弹簧的弹力满足胡克定律: 。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。

(2) 弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。

考点二:关于摩擦力的问题

1. 对摩擦力认识的四个“不一定”

(1) 摩擦力不一定是阻力

(2) 静摩擦力不一定比滑动摩擦力小

(3) 静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向

(4) 摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力

2. 静摩擦力用二力平衡来求解,滑动摩擦力用公式 来求解

3. 静摩擦力存在及其方向的判断

存在判断:设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。

方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。

考点三:物体的受力分析

1.物体受力分析的方法

(1) 方法

(2) 选择

2.受力分析的顺序

先重力,再接触力,分析其他外力

3.受力分析时应注意的问题

(1) 分析物体受力时,只分析周围物体对研究对象所施加的力

(2) 受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力

(3) 如果一个力的方向难以确定,可用设法分析

(4) 物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定

(5) 受力分析外部作用看整体,互相作用要隔离

考点四:正交分解法在力的合成与分解中的应用

1. 正交分解时建立坐标轴的原则

(1) 以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上

(2) 一般使所要求的力落在坐标轴上

第四章 牛顿运动定律

考点一:对牛顿运动定律的理解

1. 对牛顿定律的理解

(1) 揭示了物体不受外力作用时的运动规律

(2) 牛顿定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关

(4) 牛顿定律是用理想化的实验总结出来的一条的规律,并非牛顿第二定律的特例

(5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿定律

2. 对牛顿第二定律的理解

(1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、性

(2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态

(3) 加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度

3. 对牛顿第三定律的理解

(1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力

(2) 指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同

1. 理想实验法

2. 控制变量法

3. 整体与隔离法

4. 图解法

5. 正交分解法

6. 关于临界问题

处理的基本方法是:

根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件(更多类型见错题本)

考点三:应用牛顿运动定律解决的几个典型问题

1. 力、加速度、速度的关系

(1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系 ,合力只要不为零,无论速度是多大,加速度都不为零

(2) 合力与速度无必然联系,只有速度变化才与合力有必然联系

(3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小

2. 关于轻绳、轻杆、轻弹簧的问题

(1) 轻绳

① 拉力的方向一定沿绳指向绳收缩的方向

② 同一根绳上各处的拉力大小都相等

④ 弹力可做瞬时变化

(2) 轻杆

① 作用力方向不一定沿杆的方向

② 各处作用力的大小相等

③ 轻杆不能伸长或压缩

④ 轻杆受到的弹力方式有:拉力、压力

⑤ 弹力变化所需时间极短,可忽略不计

(3) 轻弹簧

① 各处的弹力大小相等,方向与弹簧形变的方向相反

② 弹力的大小遵循 的关系

③ 弹簧的弹力不能发生突变

3. 关于超重和失重的问题

(1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力

(2) 物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重

(3) 物体出于完全失重状态时,物体与重力有关的现象全部消失:

① 与重力有关的一些仪器如天平、台秤等不能使用

② 竖直上抛的物体再也回不到地面

③ 杯口向下时,杯中的水也不流出

章 力

定义:力是物体之间的相互作用。

理解要点:

(1)力具有物质性:力不能离开物体而存在。

说明:①对某一物体而言,可能有一个或多个施力物体。

②并非先有施力物体,后有受力物体

(2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。

说明:①相互作用的物体可以直接接触,也可以不接触。

②力的大小用测力计测量。

(3)力具有矢量性:力不大小,也有方向。

(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。

(5)力的种类:

①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。

②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。

说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。

重力

定义:由于受到地球的吸引而使物体受到的力叫重力。

说明:①地球附近的物体都受到重力作用。

②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。

③重力的施力物体是地球。

④在两极时重力等于物体所受的万有引力,在其它位置时不相等。

(1)重力的大小:G=mg

说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。

②一5、往返时间t=2Vo/g(从抛出落回原位置的时间)个物体的重力不受运动状态的影响,与是否还受其它力也无关系。

③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。

(2) 重力的方向:竖直向下(即垂直于水平面)

说明:①在两极与在赤道上的物体,所受重力的方向指向地心。

②重力的方向不受其它作用力的影响,与运动状态也没有关系。

(3)重心:物体所受重力的作用点。

重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。

②质量分布不均匀的物体的重心与物体的形状、质量分布有关。

③薄板形物体的重心,可用悬挂法确定。

说明:①物体的重心可在物体上,也可在物体外。

②重心的位置与物体所处的位置及放置状态和运动状态无关。

③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。

弹力

(1) 形变:物体的形状或体积的改变,叫做形变。

说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。

②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。

(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。

说明:①弹力产生的条件:接触;弹性形变。

②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。

③弹力必须产生在同时形变的两物体间。

④弹力与弹性形变同时产生同时消失。

(3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。

几种典型的产生弹力的理想模型:

① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。

② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。

③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。

(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。

摩擦力

(1) 滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

说明:①摩擦力的产生是由于物体表面不光滑造成的。

②摩擦力具有相互性。

ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。

ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。

说明:①“与相对运动方向相反”不能等同于“与运动方向相反”

②滑动摩擦力可能起动力作用,也可能起阻力作用。

ⅲ滑动摩擦力的大小:F=μFN

说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。

②μ与接触面的材料、接触面的粗糙程度有关,无单位。

③滑动摩擦力大小,与相对运动的速度大小无关。

ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。

ⅴ.滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。

(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。

说明:静摩擦力的作用具有相互性。

ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。

ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。

说明:①运动的物体可以受到静摩擦力的作用。

②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。

③静摩擦力可以是阻力也可以是动力。

ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0<F≤Fm,其中Fm为两个物体间的静摩擦力。静摩擦力的大小应根据实际运动情况,利用平衡条件或牛顿运动定律进行计算。

说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。

②静摩擦力大小决定于正压力与静摩擦因数效果:总是阻碍物体间的相对运动的趋势。

受力分析的程序是:

1. 根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。

2. 把研究对象从周围的环境中隔离出来,按照先外力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。

3. 对物体受力分析时,应注意一下几点:

(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。

(2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。

(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。

力的合成

求几个共点力的合力,叫做力的合成。

(2) 一条直线上两力合成,在规定正方向后,可利用代数运算。

(3) 互成角度共点力互成的分析

①两个力合力的取值范围是|F1-F2|≤F≤F1+F2

②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。

③同时作用在同一物体上的共点力才能合成(同时性和同体性)。

④合力可能比分力大,也可能比分力小,也可能等于某一个分力。

采纳吧~

一二楼的:

啊,都说得很详细啊

不可能下降

物理圆周运动知识点

物理圆周运动知识点1 1.线速度V=s/t=2πr/T 2.角速度ω=/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

物理圆周运动知识点2

直线运动

1)匀变速直线运动

1.平均速度v平=st(定义式)

2.有用推论vt2–v02=2as

3.中间时刻速度v平=vt2=vt+v02

4.末速度vt=v0+at

5.中间位置速度vs2=v02+vt2212

6.位移s=v平t=v0t+at22=vt2t

7.加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2ΔS为相邻连续相等时间(T)内位移之

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s^2末速度(Vt):m/s

时间(t):秒(s)位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h

注:

(1)平均速度是矢量。

(2)物体速度大,加速度不一定大。

(3)a=(Vt-Vo)/t只是量度式,不是决定式。

(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2)自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算)4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3)竖直上抛

1.位移S=Vot-gt^2/22.末速度Vt=Vo-gt(g=9.8≈10m/s2)

3.有用推论Vt^2–Vo^2=-2gS4.上升高度Hm=Vo^2/2g(抛出点算起)

5.往返时间t=2Vo/g(从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

质点的运动

曲线运动万有引力

1)平抛运动

1.水平方向速度Vx=Vo2.竖直方向速度Vy=gt

3.水平方向位移Sx=Vot4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+Sy^2)1/2,

位移方向与水平夹角α:tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

匀速圆周运动

1.线速度V=s/t=2πR/T2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R4.向心力F心=Mv^2/R=mω^2_=m(2π/T)^2_

5.周期与频率T=1/f6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)

周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s

角速度(ω):rad/s向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)

2.万P=FvF=ma+f(由牛顿第二定律得)有引力定律F=Gm1m2/r^2G=6.67×10^-11N?m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mgg=GM/R^2R:天体半径(m)

4.卫星绕行速度、角速度、周期V=(GM/R)1/2ω=(GM/R^3)1/2T=2π(R^3/GM)1/2

5.(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/sV2=11.2Km/sV3=16.7Km/s

6.地球同步卫星GMm/(R+h)^2=m_π^2(R+h)/T^2h≈3.6kmh:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和最小发射速度均为7.9Km/S。

注意:

1.运动时间只由高度决定。

2.水平位移和落地速度由高度和初速度决定,平抛运动的物体在任何相等的时间内位移的增量都是相同的。

4.任意时刻,速度偏向角的正切等于位移偏向角正切的两倍。

5.任意时刻,速度矢量的反向延长线水平位移的中点。

6.从斜面上沿水平方向抛出物体,若物体落在斜面上,物体与斜面接触时的速度方向与水平方向的夹角的正切是斜面倾角正切的二倍。

7.从斜面平抛出的物体,若物体落在斜面上,物体与斜面接触时速度方向、物体与斜面接触时速度方向和斜面形成的夹角与物体抛出时的初速度无关,只取决于斜面的倾角。

练习题:

1、物体做曲线运动时,下列说法中不可能存在的是()

A.速度的大小可以不发生变化而方向在不断地变化。

B.速度的方向可以不发生变化而大小在不断地变化

C.速度的大小和方向都可以在不断地发生变化

D.加速度的方向在不断地发生变化

2、关于曲线运动的说法中正确的是()

A.做曲线运动物体的加速度方向跟它的速度方向不在同一直线上

B.速度变化的运动必定是曲线运动

D.加速度变化的运动必定是曲线运动

3、关于运动的合成,下列说法中正确的是()

A.合运动的速度一定比每一个分运动的速度大

B.两个匀变速直线运动的合运动一定是曲线运动

C.只要两个分运动是直线运动,那么合运动也一定是直线运动

D.两个分运动的时间一定与它们合运动的时间相等

4、关于做平抛运动的物体,下列说法中正确的是()

A.从同一高度以不同速度水平抛出的物体,在空中的运动时间不同

B.以相同速度从不同高度水平抛出的物体,在空中的运动时间相同

C.平抛初速度越大的物体,水平位移一定越大

D.做平抛运动的物体,落地时的速度与抛出时的速度大小和抛出时的高度有关

物理学习方法

1、理象记忆法:如当车起步和刹车时,人向后、前倾倒的现象,来记忆惯性概念。

2、浓缩记忆法:如光的反射定律可浓缩成"三线共面、两角相等,平面镜成像规律可浓缩为“物象对称、左右相反”。

3、口诀记忆法:如“物体有惯性,惯性物属性,大小看质量,不论动与静。”

4、比较记忆法:如惯性与惯性定律、像与影、蒸发与沸腾、压力与压强、串联与并联等,比较区别与联系,找出异同。

6、归类记忆法:如单位时间通过的路程叫速度,单位时间里做功的多少叫功率,单位体积的某种物质的质量叫密度,单位面积的压力叫压强等,都可以归纳为“单位……的……叫……”类。

7、顾名思义法:如根据“浮力”、“拉力”、“支持力”等名称,易记住这些力的方向。

8、因果(条件记忆法):如判定使用左、右手定则的条件时,可根据由于在磁场中有电流,而产生力,就用左手定则;若是电力在磁场中运动,而产生电流,就用右手定则。

9、图表记忆法:可采用小卡片、转动纸板、列表格等方式,将知识内容分类归纳小结编成图表记忆。

10、实践记忆法:如制作测力计,可以帮助同学们记在弹簧的伸长与外力成正比的知识。

物理学习技巧

一、重视物理概念

初中将学习大量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,应力求做到“五会”:

会表述:能熟记并正确地叙述概念、规律的内容。

能表达:明确概念、规律的表达公式及公式中每个符号的科学意义。

会理解:能控制公式的利用范围和使用条件。

会变形:会对公式进行变形,并理解变形后(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;的含义。

能应用:能应用概念和公式进行简单的判断、推理和计算。

二、重视画图和识图

在初中物理课程里,同学们会学到力的图示、简单的机械图、电路图和光路图。一类是属于作图类型题,例如,作光路图等,要力求符号标准、线条清晰、尺规作图。另一类属于识图,例如,识别机械运动部分的v-t图象、s-t图象,以及物态变化部分的晶体和非晶体熔化和凝固图象等,要记住讲过的最基本图象,明确图象中各部分所代表的物理含义。

物理圆周运动知识点3

物理公式大放送:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心。

匀速圆周运动

1.线速度V=s/t=2πr/T

2.角速度ω=Φ/t=2π/T=2πf =V/r

3.向心加速度a=V2/r=ω2r=(2π/T)2r

4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

温馨提示:做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

物理圆周运动知识点4

【知识点1】 匀速圆周运动及其描述

一、描述匀速圆周运动的快慢

1.线速度

(1)定义:线速度的大小等于质点通过的弧长s跟通过这段弧长所用时间t的比值。

(2)公式:v=s/t

(3)意义:描述做圆周运动的物体的运动快慢。

(4)方向:物体在某一时刻或某一位置的线速度方向就是圆弧上该点的切线方向。

2.角速度

(1)定义:在圆周运动中,质点所在半径转过的角度θ和所用时间t的比值,就是物体转动的角速度。

(2)公式:ω=θ/t

(3)意义:描述物体绕圆心转动的快慢。匀速圆周运动的角速度是不变的。

(4)单位:在单位制中,角速度的单位是弧度每秒,符号为rad/s。

3.周期

(1)定义:做匀速圆周运动的物体,运动一周所用的'时间叫做周期。用T表示,单位是秒,符号是s。

(2)与频率的关系:T=1/f.

4.转速

(1)定义:做匀速圆周运动的物体,单位时间内转过的圈数称为转速n.

(2)单位:转/秒(r/s)或转/分(r/min)。

二、描述圆周运动的物理量及其关系

1.角速度、周期、转速之间的关系ω=2π/T=2nπ

即角速度与周期成反比,与转速成正比。

(1)转速n的单位为r/s.

(2)ω、T、n三个量中任意一个确定,其余两个也就确定。

2.线速度与角速度的关系v=rω

r一定时,v∝ω,如圆盘转动时,圆盘上某点的ω越大则v越大

ω一定时,v∝r,如时钟的分针转动时,分针上各质点的ω相同,但分针上离圆心越远的质点,r越大,v也越大

v一定时,ω∝1/r,如皮带传动装置中,两轮边缘上各点线速度大小相等,但大轮的r较大,ω较小

3.线速度与周期的关系v=2πr/T,即当半径r相同时,周期小的线速度大。

特别提醒:

(1)v、ω、r是瞬时对应关系,只有控制一个量不变,才能确定另外两个量是正比还是反比关系。

(2)描述匀速圆周运动的线速度大小不变,方向时刻变化,即线速度是变化的,而角速度、周期、转速是不变的。

【知识点2】 三种传动方式

1.皮带传动(同一皮带不打滑)

(1)线速度:和皮带相连的两轮边缘线速度大小相等v1=v2

(2)角速度:ω1:ω2=r2:r1

(3)转速:n1:n2=r2:r1

(3)周期:T1:T2=r1:r2

2.齿轮传动

A点和B点分别是两个齿轮边缘上的点,两个齿轮轮齿啮合。齿轮转动时,它们的线速度、角速度、周期存在以下定量关系:

vA=vB,ωA:ωB=r2:r1,TA:TB=r1:r2

两点转动方向相反。

同轴传动装置中各点的角速度相同,转速相同,周期相同,距转轴上不同半径的各点线速度大小不同,即vA:vB=r1:r2.

特别提醒:在解答传动装置中各物理量间的关系时,首先确定相同的量是线速度还是角速度,从而确定其他各量间的关系。齿轮传动和链条传动跟皮带传动相似。

【知识点3】 向心力

1.向心力的来源:向心力是根据力的作用效果命名的。可以是重力、弹力、摩擦力等各种性质的力,可以是某几个力的合力,也可以是某个力的分力。

2.向心力的大小

F=ma=mv2/r=mω2r=mvω=m(2π/T)2r=m(2πn)2r

3.对公式的理解

(1)向心力公式既适用于匀速圆周运动,也适用于非匀速圆周运动。

(2)向心力公式具有瞬时性,即式中各量对应同一时刻。

(3)当m、ω一定时,由F知F∝r;

当m、v一定时,由F=mv2/r 知 F∝1/r。

特别提醒:

(1)在匀速圆周运动中,物体所受的合外力一定指向圆心,充当向心力。非匀速圆周运动的合外力不指向圆心,合外力的法向分力为向心力。

(2)任何情况的圆周运动,向心力的方向一定指向圆心,向心力是做圆周运动的物体需要的一个指向圆心的力,而不是物体又受到一个新的力。

高中物理必修二第五章知识点总结

①真空中(空气中也近似成立),②点电荷

曲线运动是高中物理必修二第五章的内容,是物理学科的难点。为了帮助高中学生写好第五章内容,下面我给大家带来高中物理必修二第五章知识点,希望对你有帮助。

③ 认为受力形变极微,看做不可伸长

高中物理必修二第五章知识点

高中物理必修二知识点

重力势能

(1)定义:物体由于被举高而具有的能量.用Ep表示。表达式Ep=mgh是标量单位:焦耳(J)

(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关,重力势能是相对性的,和参考平面有关,一般以地面为参考平面

重力势能的变化是的,和参考平面无关

(4)弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关,弹性势能的变化由弹力做功来量度

曲线运动

1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。

2.物体做直线或曲线运动的条件:

(已知当物体受到合外力F作用下,在F方向上便产生加速度a)

(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。

3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。

4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。

分运动:

(1)在水平方向上由于不受力,将做匀速直线运动;

(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。

5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.

6.①水平分速度: ②竖直分速度: ③t秒末的合速度

④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角 表示

7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

高中物理必教学策略

围绕核心概念展开教学

核心素养导向的物理教学要求教学活动不能停留在仅让学生记住一些物理学事实,而是要关注通过事实抽象提出的核心概念,教师可以围绕“是否可以忽略物体的大小和形状”开展教学,讨论B、C两种情况下能否将物体看成质点,培养学生敏锐鉴别的思维,从而更深层次的理解“质点”的概念和“理想化模型”,并将这种“忽略次要因素”的思维 方法 迁移到工作和生活中。

反观当前的中学物理课堂中,许多教师为应付考试的需要,往往“赶进度”,注重“关键考点”的教学,这样的方法使得学生难以进行有意义的知识组织,在“关键考点”之外通常只是能触及一些表面性的事实和结论。然而关注事实记忆的课程终将被完全遗忘,这就是学生“全都还给老师了”的原因所在。

提供应用科学方法研究问题的机会

物理核心素养导向的教学要求物理课程能够为学生在今后工作和生活中面对未知问题时提供解决问题的思路和方法。物理课堂教学应该为学生创设真实、复杂的问题情境,鼓励并学生剖析问题、简化问题、建立物理模型,并运用适当的方法解释问题。

注重科学探究是新课程的亮点之一,《美国科学 教育 标准》认为科学探究“指的是科学家用以研究自然界并基于此种研究获得的证据提出种种解释的多种不同途径。科学探究也指的是学生用以获取知识、领悟科学的思想观念、领悟科学家研究自然界所用的方法而进行的各种活动”。科学家研究问题的关键,是能够在纷繁复杂的表象下发现问题的关键,在此基础上建构物理模型、设计方案、解决问题。科学探究教学的价值应该是培养学生利用科学探究的方法获取知识、研究解决生活中遇到问题的能力,而不仅仅是简单重复科学家发现知识的过程。

然而,在过于强调知识积累的物理教学中,科学探究更多时候仅仅被作为发现知识的“工具”和“手段”,获得事实性结论成了科学探究的目的所在,使得科学探究的价值被弱化。在物理课堂中探究的问题往往是教师已经明确提出的(或者是问题情境中显而易见的),学生只要按部就班地“猜想、设、实验……”就能够轻而易举地探究出正确的结论。学生在探究前基本知道了结论,在探究过程中既不可能也没有时间思考“可能存在的问题”,长期这样的重复训练永远达不到发展学生问题意识和探究能力的目的,也不能促进学生真正理解科学探究的精髓。

还原“真实”科学研究历史

物理核心素养导向的教学要求关注学生科学态度和价值观的体验,教师可以借助物理学发展史,为学生创设真实的情境,避免空洞的说教,帮助学生切实体验严谨的科学态度、科学精神。同时,教师应该关注学生“求真”的愿望,还给学生一个真实的历史。

杨振宁曾将他取得成功的奥秘归结为:“要站在问题开始的地方,要面对原始的问题,而不要淹没在文献的海洋里……”。这给我们物理教学极大的启示:物理教学同样不能淹没在教材、教辅和题目的海洋里,而应深入挖掘物理学曲折的发展史中涌现出来的伟大的科学思想、科学精神。写在教科书上的科学结论固然重要,但它背后的孕育发展、由潜到显的转化历程则更富启迪。物理核心素养导向的教学要求教师向学生展现物理概念的形成过程、物理规律的发现过程,以及物理问题的解决过程,体验真实的科学精神。

实施物理核心素养导向的教学要求教师深入研究物理学发展的过程,清楚其中所蕴含的科学思想和方法,创设鲜活、真实的学习情境,带领学生领略物理学的价值,体验物理学研究过程中的科学精神,促进他们科学素养的提升。

平抛运动的规律是什么?

(2)重力做功和重力势能的关系,W重=-ΔEp,重力势能的变化由重力做功来量度

从受力情况看:

a竖直的重力与速度方向有夹角,3.在任意相等的时间里,速度的变化量相等,方向也相同.是加速度大小,方向不变的曲线运动作曲线运动。

b.水平方向不受外力作用,是匀速运动,速度为V0。

c. 竖直方向受重力作用,没有初速度,加速度为重力加速度g,是自由落体运动。

总结:做平抛运动的物体,在水平方向上由于不受力,将做匀速直线运动;在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。加速度等于g 曲线运动条件:速度与合力不在一条直线

水平方向速度大小,竖直方向速度大小

位移方向及大小,速度方向及大小

变形公式

类抛运动的知识点,详细点

C.受恒力作用的物体不做曲高一物理必修一知识点总结相关 文章 :线运动

物体以一定的初速度沿水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。平抛运动可看作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运动。平抛运动的物体,由于所受的合外力为恒力,所以平抛运动是匀变速曲线运动,平抛物体的运动轨迹为一抛物线。平抛运动是曲线运动 平抛运动的时间仅与抛出点的竖直高度有关;物体落地的水平位移与时间(竖直高度)及水平初速度有关。

平抛运动的规律是什么?

(3) 肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因

1、运动时间只由高度决定。

2、水平位移和落地速度由高度和初速度决定。

3、在任意相等的时间里,速度的变化量相等,方向也相同. 是加速度大小,方向不变的曲线运动。

4、任意时刻,速度偏向角的正切等于位移偏向角正切的两倍。

5、任意时刻,速度矢量的反向延长线必过水平位移的中点。

6、从斜面上沿水平方向抛出物体,若物体落在斜面上,物体与斜面接触时的速度方向与水平方向的夹角的正切是斜面倾角正切的二倍。

扩展资料:

由于平抛物体的运动是水平方向的匀速直线运动和竖直方向的自由落体运动的和合运动。运动中,其水平运动的速度保持不变,单位时间里,水平方向的分速度的变化量为零;

竖直方向的分速度的变化量为9.8m/s^2,而时间里合速度的变化量为两个方向速度变化量的矢量和,其大小为:9.8m/s^2,方向竖直向下。由此可知,在相等的时间里,速度的变化量相等,由此也可以知道,在任意相等的时间里,动量的变化量相等。

规律

公式:水平方向:s=v0t

竖直方向:h=1/2gt^2

两个公式中时间t是相同的

合速度公式,根号下{V0^2+(gt)^2}

1、运动时间只由高度决定。

设想在高度H处以水平速度vo将物体抛出,若不计空气阻力,则物体在竖直方向的运动是自由落体运动,由公式可得: h=12gt^2,由此式可以看出,物体的运动时间只与平抛运动开始时的高度有关。t=(2h/g)^1/2

2、水平位移和落地速度由高度和初速度决定。

平抛物体水平方向的运动是匀速直线运动,其水平位移,将代入得:x(水平)=v0t=v0(2h/g)^1/2

v(落地速度)=√(v0^2+2gh)

由此是可以看出,水平位移和落地速度是由初速度和平抛开始时的高度决定的。

平抛运动的物体在任何相等的时间内位移的增量都是相同的。

3、在任意相等的时间里,速度的变化量相等,方向也相同. 是加速度大小,方向不变的曲线运动

由于平抛物体的运动是水平方向的匀速直线运动和竖直方向的自由落体运动的和合运动。运动中,其水平运动的速度保持不变,单位时间里,水平方向的分速度的变化量为零,竖直方向的分速度的变化量为9.8m/s^2,而时间里合速度的变化量为两个方向速度变化量的矢量和,其大小为:9.8m/s^2,方向竖直向下。

扩展资料:

物体以一定的初速度水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。平抛运动可看作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运动。

平抛运动的物体,由于所受的合外力为恒力,所以平抛运动是匀变速曲线运动,平抛物体的运动轨迹为一抛物线。平抛运动是曲线运动 平抛运动的时间仅与抛出点的竖直高度有关;物体落地的水平位移与时间(竖直高度)及水平初速度有关,其速度变化的方向始终是竖直向下的。

探究平抛运动3.同轴传动在水平方向运动的特点

高一年级物理下册知识点总结

1、开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)

【 #高一# 导语】高一新生要作好充分思想准备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律制度。记住:是你主动地适应环境,而不是环境适应你。因为你走向参加工作也得适应。以下内容是 无 为你整理的《高一年级物理下册知识点总结》,希望你不负时光,努力向前,加油!

物体在里的方向上通过的距离。

1.高一年级物理下册知识点总结

1.水平方向速度Vx=Vo

2.竖直方向速度Vy=gt

3.水平方向位移Sx=Vot

4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+Sy^2)1/2,

位移方向与水平夹角α:tgα=Sy/Sx=gt/2Vo

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。

(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。

(3)θ与β的关系为tgβ=2tgα。

(4)在平抛运动中时间t是解题关键。

(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2.高一年级物理下册知识点总结

匀变速直线运动的位移图象

1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)

2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)

3.图象中两图线的交点表示两物体在这一时刻相遇。

匀变速直线运动的速度图象

1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)

2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。

3.高一年级物理下册知识点总结

研究静摩擦力

1.当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

2.物体所受到的静摩擦力有一个限度,这个值叫静摩擦力。

3.静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

4.静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

5.静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0?N(μ≤μ0)

6.静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;设法(设没有静摩擦)。

力的等效/替代

1.如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。

2.根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。

力的平行四边形定则

1.力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。

2.一切矢量的运算都遵循平行四边形定则。

4.高一年级物理下册知识点总结

圆周运动

1.线速度V:

①圆周运动的快慢可以用物体通过的弧长与所用时间的比值来量度该比值即为线速度

②V=Δs/Δt单位:m/s

③匀速圆周运动:物体沿着圆周运动,并且线速度的大小处处相等(tips:方向时时改变)

2.角速度ω:

①物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,即角速度

②公式ω=Δθ/Δt(角度使用弧度制)ω的单位是rad/s

3.转速r:物体单位时间转过的圈数单位:转每秒或转每分

4.周期T:做匀速圆周运动的物体,转过一周所用的时间单位:秒S

5.关系式:V=ωr(r为半径)ω=2π/T

6.向心加速度

①定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫做向心加速度

②表达式a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指转过的圈数)

方向:指向圆心

5.高一年级物理下册知识点总结

1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。

2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分析,分别列出方程,再联立求解的方法。

3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用。

4、受力分析的判断依据:

①从力的概念判断,寻找施力物体;

②从力的性质判断,寻找产生原因;

③从力的效果判断,寻找是否产生形变或改变运动状态。

总之,在进行受力分析时一定要按次序画出物体实际受的各个力,为解决这一难点可记忆以下受力口诀:

地球周围受重力绕物一周找弹力

考虑有无摩擦力其他外力细分析

合力分力不重复只画受力抛施力

6.高一年级物理下册知识点总结

1、动力学的两类基本问题:

(1)已知物体的受力情况,确定物体的运动情况,基本解题思路是:

①根据受力情况,利用牛顿第二定律求出物体的加速度

②根据题意,选择恰当的运动学公式求解相关的速度、位移等

(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:

①根据运动情况,利用运动学公式求出物体的加速度

②根据牛顿第二定律确定物体所受的合外力,从而求出未知力

(3)注意点:

①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键

②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化

2、关于超重和失重:

在平衡状态时,物体对水平支持物的压力大小等于物体的重力。当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力。当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象。

当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象。对其理解应注意以下三点:

(1)当物体处于超重和失重状态时,物体的重力并没有变化

(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向

(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等

版权声明:本文仅代表作者观点,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除

下一篇 :